Ensemble Classifiers for Land Cover Mapping

نویسندگان

  • BOLANLE TOLULOPE ABE
  • Tshilidzi Marwala
  • Bolanle Tolulope Abe
چکیده

not been submitted before for any degree or examination in any other University. Abstract This study presents experimental investigations on supervised ensemble classification for land cover classification. Despite the arrays of classifiers available in machine learning to create an ensemble, knowing and understanding the correct classifier to use for a particular dataset remains a major challenge. The ensemble method increases classification accuracy by consulting experts taking final decision in the classification process. This study generated various land cover maps, using image classification. This is to authenticate the number of classifiers that should be used for creating an ensemble. The study exploits feature selection techniques to create diversity in ensemble classification. Landsat imagery of Kampala (the capital of Uganda, East Africa), AVIRIS hyperspectral dataset of Indian pine of Indiana and Support Vector Machines were used to carry out the investigation. The research reveals that the superiority of different classification approaches employed depends on the datasets used. In addition, the pre-processing stage and the strategy used during the designing phase of each classifier is very essential. The results obtained from the experiments conducted showed that, there is no significant benefit in using many base classifiers for decision making in ensemble classification. The research outcome also reveals how to design better ensemble using feature selection approach for land cover mapping. The study also reports the experimental comparison of generalized support vector machines, random forests, C4.5, neural network and bagging classifiers for land cover classification of hyperspectral images. These classifiers are among the state-of-the-art supervised machine learning methods for solving complex pattern recognition problems. The pixel purity index was used to obtain the endmembers from the Indiana pine and Washington DC mall hyperspectral image datasets. Generalized reduced gradient optimization algorithm was used to estimate fractional abundance in the image dataset thereafter obtained numeric values for land cover classification. v The fractional abundance of each pixel was obtained using the spectral signature values of the endmembers and pixel values of class labels. As the results of the experiments, the classifiers show promising results. Using Indiana pine and Washington DC mall hyperspectral datasets, experimental comparison of all the classifiers' performances reveals that random forests outperforms the other classifiers and it is computational effective. The study makes a positive contribution to the problem of classifying land cover hyperspectral images by exploring the use of generalized reduced gradient method and five supervised classifiers. The accuracy comparison of these …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Land Cover Mapping Using Ensemble Feature Selection Methods

Ensemble classification is an emerging approach to land cover mapping whereby the final classification output is a result of a ‘consensus’ of classifiers. Intuitively, an ensemble system should consist of base classifiers which are diverse i.e. classifiers whose decision boundaries err differently. In this paper ensemble feature selection is used to impose diversity in ensembles. The features o...

متن کامل

An svm multiclassifier approach to land cover mapping

From the advent of the application of satellite imagery to land cover mapping, one of the growing areas of research interest has been in the area of image classification. Image classifiers are algorithms used to extract land cover information from satellite imagery. Most of the initial research has focussed on the development and application of algorithms to better existing and emerging classif...

متن کامل

Land Cover Mapping Using Combination and Ensemble Classifiers

In recent years, large scale land cover maps constructed from remotely sensed data have become important information sources for resource management. Classifiers are commonly used to predict land cover for unsampled map units; hence, they play a key role in map construction. Achieving adequate classifier accuracy is often problematic for highly variable and difficult-to-sample landscapes. This ...

متن کامل

Random Forest Algorithm for Land Cover Classification

Since the launch of the first land observation satellite Landsat-1 in 1972, many machine learning algorithms have been used to classify pixels in Thematic Mapper (TM) imagery. Classification methods range from parametric supervised classification algorithms such as maximum likelihood, unsupervised algorithms such as ISODAT and k-means clustering to machine learning algorithms such as artificial...

متن کامل

Improving Automated Land Cover Mapping by Identifying and Eliminating Mislabeled Observations from Training Data

This paper presents a new approach to identifying and eliminating mislabeled training samples. The goal of this technique is to decrease the error of classification algorithms by improving the quality of the training data. The approach employs an ensemble of classifiers that serve as a filter for the training data. Using an n-fold cross validation, the training data is passed through the filter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014